

Object Oriented Programming in PHP

We can imagine our universe made of different objects like sun, earth, moon etc. Similarly

we can imagine our car made of different objects like wheel, steering, gear etc. Same way

there is object oriented programming concepts which assume everything as an object and

implement a software using different objects.

Object Oriented Concepts

Before we go in detail, lets define important terms related to Object Oriented Programming.

 Class − This is a programmer-defined data type, which includes local functions as well

as local data. You can think of a class as a template for making many instances of the

same kind (or class) of object.

 Object − An individual instance of the data structure defined by a class. You define a

class once and then make many objects that belong to it. Objects are also known as

instance.

 Member Variable − These are the variables defined inside a class. This data will be

invisible to the outside of the class and can be accessed via member functions. These

variables are called attribute of the object once an object is created.

 Member function − These are the function defined inside a class and are used to access

object data.

 Inheritance − When a class is defined by inheriting existing function of a parent class

then it is called inheritance. Here child class will inherit all or few member functions

and variables of a parent class.

 Parent class − A class that is inherited from by another class. This is also called a base

class or super class.

 Child Class − A class that inherits from another class. This is also called a subclass or

derived class.

 Polymorphism − This is an object oriented concept where same function can be used

for different purposes. For example function name will remain same but it take

different number of arguments and can do different task.

 Overloading − a type of polymorphism in which some or all of operators have different

implementations depending on the types of their arguments. Similarly functions can

also be overloaded with different implementation.

 Data Abstraction − Any representation of data in which the implementation details

are hidden (abstracted).

 Encapsulation − refers to a concept where we encapsulate all the data and member

functions together to form an object.

 Constructor − refers to a special type of function which will be called automatically

whenever there is an object formation from a class.

 Destructor − refers to a special type of function which will be called automatically

whenever an object is deleted or goes out of scope.

Defining PHP Classes

The general form for defining a new class in PHP is as follows −

<?php

 class phpClass {

 var $var1;

 var $var2 = "constant string";

 function myfunc ($arg1, $arg2) {

 [..]

 }

 [..]

 }

?>

Here is the description of each line −

 The special form class, followed by the name of the class that you want to define.

 A set of braces enclosing any number of variable declarations and function definitions.

 Variable declarations start with the special form var, which is followed by a

conventional $ variable name; they may also have an initial assignment to a constant

value.

 Function definitions look much like standalone PHP functions but are local to the class

and will be used to set and access object data.

Example

Here is an example which defines a class of Books type −

<?php

 class Books {

 /* Member variables */

 var $price;

 var $title;

 /* Member functions */

 function setPrice($par){

 $this->price = $par;

 }

 function getPrice(){

 echo $this->price ."
";

 }

 function setTitle($par){

 $this->title = $par;

 }

 function getTitle(){

 echo $this->title ."
";

 }

 }

?>

The variable $this is a special variable and it refers to the same object ie. itself.

Creating Objects in PHP

Once you defined your class, then you can create as many objects as you like of that class

type. Following is an example of how to create object using new operator.

$physics = new Books;

$maths = new Books;

$chemistry = new Books;

Here we have created three objects and these objects are independent of each other and they

will have their existence separately. Next we will see how to access member function and

process member variables.

Calling Member Functions

After creating your objects, you will be able to call member functions related to that object.

One member function will be able to process member variable of related object only.

Following example shows how to set title and prices for the three books by calling member

functions.

$physics->setTitle("Physics for High School");

$chemistry->setTitle("Advanced Chemistry");

$maths->setTitle("Algebra");

$physics->setPrice(10);

$chemistry->setPrice(15);

$maths->setPrice(7);

Now you call another member functions to get the values set by in above example −

$physics->getTitle();

$chemistry->getTitle();

$maths->getTitle();

$physics->getPrice();

$chemistry->getPrice();

$maths->getPrice();

This will produce the following result −

Physics for High School

Advanced Chemistry

Algebra

10

15

7

Constructor Functions

Constructor Functions are special type of functions which are called automatically whenever

an object is created. So we take full advantage of this behaviour, by initializing many things

through constructor functions.

PHP provides a special function called __construct() to define a constructor. You can pass as

many as arguments you like into the constructor function.

Following example will create one constructor for Books class and it will initialize price and

title for the book at the time of object creation.

function __construct($par1, $par2) {

 $this->title = $par1;

 $this->price = $par2;

}

Now we don't need to call set function separately to set price and title. We can initialize these

two member variables at the time of object creation only. Check following example below −

$physics = new Books("Physics for High School", 10);

$maths = new Books ("Advanced Chemistry", 15);

$chemistry = new Books ("Algebra", 7);

/* Get those set values */

$physics->getTitle();

$chemistry->getTitle();

$maths->getTitle();

$physics->getPrice();

$chemistry->getPrice();

$maths->getPrice();

This will produce the following result −

 Physics for High School

 Advanced Chemistry

 Algebra

 10

 15

 7

Destructor

Like a constructor function you can define a destructor function using function __destruct().

You can release all the resources with-in a destructor.

Inheritance

PHP class definitions can optionally inherit from a parent class definition by using the extends

clause. The syntax is as follows −

class Child extends Parent {

 <definition body>

}

The effect of inheritance is that the child class (or subclass or derived class) has the following

characteristics −

 Automatically has all the member variable declarations of the parent class.

 Automatically has all the same member functions as the parent, which (by default) will

work the same way as those functions do in the parent.

Following example inherit Books class and adds more functionality based on the requirement.

class Novel extends Books {

 var $publisher;

 function setPublisher($par){

 $this->publisher = $par;

 }

 function getPublisher(){

 echo $this->publisher. "
";

 }

}

Now apart from inherited functions, class Novel keeps two additional member functions.

Function Overriding

Function definitions in child classes override definitions with the same name in parent classes.

In a child class, we can modify the definition of a function inherited from parent class.

In the following example getPrice and getTitle functions are overridden to return some values.

function getPrice() {

 echo $this->price . "
";

 return $this->price;

}

function getTitle(){

 echo $this->title . "
";

 return $this->title;

}

Public Members

Unless you specify otherwise, properties and methods of a class are public. That is to say, they

may be accessed in three possible situations −

 From outside the class in which it is declared

 From within the class in which it is declared

 From within another class that implements the class in which it is declared

Till now we have seen all members as public members. If you wish to limit the accessibility

of the members of a class then you define class members as private or protected.

Private members

By designating a member private, you limit its accessibility to the class in which it is declared.

The private member cannot be referred to from classes that inherit the class in which it is

declared and cannot be accessed from outside the class.

A class member can be made private by using private keyword infront of the member.

class MyClass {

 private $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

 private function myPrivateFunction() {

 return("I'm not visible outside!");

 }

}

When MyClass class is inherited by another class using extends, myPublicFunction() will be

visible, as will $driver. The extending class will not have any awareness of or access to

myPrivateFunction and $car, because they are declared private.

Protected members

A protected property or method is accessible in the class in which it is declared, as well as in

classes that extend that class. Protected members are not available outside of those two kinds

of classes. A class member can be made protected by using protected keyword in front of the

member.

Here is different version of MyClass −

class MyClass {

 protected $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

 protected function myPrivateFunction() {

 return("I'm visible in child class!");

 }

}

Interfaces

Interfaces are defined to provide a common function names to the implementers. Different

implementors can implement those interfaces according to their requirements. You can say,

interfaces are skeletons which are implemented by developers.

As of PHP5, it is possible to define an interface, like this −

interface Mail {

 public function sendMail();

}

Then, if another class implemented that interface, like this −

class Report implements Mail {

 // sendMail() Definition goes here

}

Constants

A constant is somewhat like a variable, in that it holds a value, but is really more like a function

because a constant is immutable. Once you declare a constant, it does not change.

Declaring one constant is easy, as is done in this version of MyClass −

class MyClass {

 const requiredMargin = 1.7;

 function __construct($incomingValue) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

}

In this class, requiredMargin is a constant. It is declared with the keyword const, and under

no circumstances can it be changed to anything other than 1.7. Note that the constant's name

does not have a leading $, as variable names do.

Abstract Classes

An abstract class is one that cannot be instantiated, only inherited. You declare an abstract

class with the keyword abstract, like this −

When inheriting from an abstract class, all methods marked abstract in the parent's class

declaration must be defined by the child; additionally, these methods must be defined with the

same visibility.

abstract class MyAbstractClass {

 abstract function myAbstractFunction() {

 }

}

Note that function definitions inside an abstract class must also be preceded by the keyword

abstract. It is not legal to have abstract function definitions inside a non-abstract class.

Static Keyword

Declaring class members or methods as static makes them accessible without needing an

instantiation of the class. A member declared as static can not be accessed with an instantiated

class object (though a static method can).

Try out following example −

<?php

 class Foo {

 public static $my_static = 'foo';

 public function staticValue() {

 return self::$my_static;

 }

 }

 print Foo::$my_static . "\n";

 $foo = new Foo();

 print $foo->staticValue() . "\n";

?>

Final Keyword

PHP 5 introduces the final keyword, which prevents child classes from overriding a method

by prefixing the definition with final. If the class itself is being defined final then it cannot be

extended.

Following example results in Fatal error: Cannot override final method

BaseClass::moreTesting()

<?php

 class BaseClass {

 public function test() {

 echo "BaseClass::test() called
";

 }

 final public function moreTesting() {

 echo "BaseClass::moreTesting() called
";

 }

 }

 class ChildClass extends BaseClass {

 public function moreTesting() {

 echo "ChildClass::moreTesting() called
";

 }

 }

?>

Calling parent constructors

Instead of writing an entirely new constructor for the subclass, let's write it by calling the

parent's constructor explicitly and then doing whatever is necessary in addition for

instantiation of the subclass. Here's a simple example −

class Name {

 var $_firstName;

 var $_lastName;

 function Name($first_name, $last_name) {

 $this->_firstName = $first_name;

 $this->_lastName = $last_name;

 }

 function toString() {

 return($this->_lastName .", " .$this->_firstName);

 }

}

class NameSub1 extends Name {

 var $_middleInitial;

 function NameSub1($first_name, $middle_initial, $last_name) {

 Name::Name($first_name, $last_name);

 $this->_middleInitial = $middle_initial;

 }

 function toString() {

 return(Name::toString() . " " . $this->_middleInitial);

 }

}

In this example, we have a parent class (Name), which has a two-argument constructor, and a

subclass (NameSub1), which has a three-argument constructor. The constructor of NameSub1

functions by calling its parent constructor explicitly using the :: syntax (passing two of its

arguments along) and then setting an additional field. Similarly, NameSub1 defines its non

constructor toString() function in terms of the parent function that it overrides.

